#### REALIZAÇÃO:



# Olimpíada Pernambucana de Matemática 2022 Segunda Fase - Nível 3 (Ensino Médio)

# UNIVERSIDADE FORERA RIBAL DE PERNAMBUCO DE MATEMÁTICA





# DPEMAT CADERNO DE QUESTÕES E SOLUÇÕES

## LEIA AS INSTRUÇÕES ABAIXO ANTES DE INICIAR A PROVA!

- 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala.
- **02.** Preencha os dados pessoais.
- **03.** A prova é composta de 5 questões: 1 questão do tipo Verdadeiro ou Falso e 4 questões dissertativas. Para cada questão será atribuído um valor máximo de 60 pontos, totalizando 300 pontos.
- **04.** A resposta da questão do tipo Verdadeiro ou Falso só será considerada mediante a marcação no gabarito e justificativa.
- 05. Para marcar a resposta, utilize apenas caneta esferográfica preta ou azul com o modelo:



- 06. A marcação da folha de respostas é definitiva, não admitindo rasuras.
- 07. Marcações duplas, em branco ou diferentes do exemplo acima serão desconsideradas.
- 08. Além de marcar a alternativa, você deve também justificar a resposta na folha destinada.
- **09.** As 4(quatro) questões discursivas devem ser resolvidas, no Caderno de Questões, e na página onde estão enunciadas.
- 10. Se o caderno não estiver completo, exija outro do fiscal da sala.
- 11. Ao receber a folha de respostas, confira seu nome e seus dados pessoais. Comunique imediatamente ao fiscal qualquer irregularidade observada.
- 12. Não risque, não amasse, não dobre e não suje a folha de respostas, pois isso poderá prejudicá-lo.
- 12. Os fiscais não estão autorizados a emitir opinião nem a prestar esclarecimentos sobre o conteúdo das provas. Cabe única e exclusivamente ao participante interpretar e decidir.
- 13. As soluções dos exercícios poderão ser feitas a lápis ou à caneta. É de responsabilidade do(da) estudante verificar se a prova está legível antes de enviá-la. Passagens ilegíveis poderão ser desconsideradas.
- 14. Se a Comissão verificar que a resposta de uma questão é dúbia ou inexistente, a questão será posteriormente anulada, e os pontos, a ela correspondentes, distribuídos entre as demais.
- 15. Duração da prova: 4 horas.

| Nome:       |                  |
|-------------|------------------|
| Identidade: | Órgão Expedidor: |
| Assinatura: |                  |

Q1. Considere o círculo  $C_a$  com centro na origem O=(0,0) e raio a. Seja A=(a,0) o ponto de interseção do círculo  $C_a$  com o eixo x. Considere agora, o círculo  $C_b$ , com centro C na reta OA e raio b, tangente à  $C_a$  em A, com b < a. O círculo  $C_b$  rola sob o círculo  $C_a$  no sentido anti-horário sem deslizar, de forma que a semirreta OC, após o rolamento, forma um ângulo  $\theta$  com o eixo x, com  $\theta < 2\frac{b}{a}\pi$  e T o ponto de interseção da semirreta OC com a circunferência  $C_a$ ,

Após o rolamento de  $C_b$  sob  $C_a$  por um ângulo  $\theta$ , o ponto A é deslocado para o ponto  $P = (x(\theta), y(\theta))$ , conforme a figura abaixo:

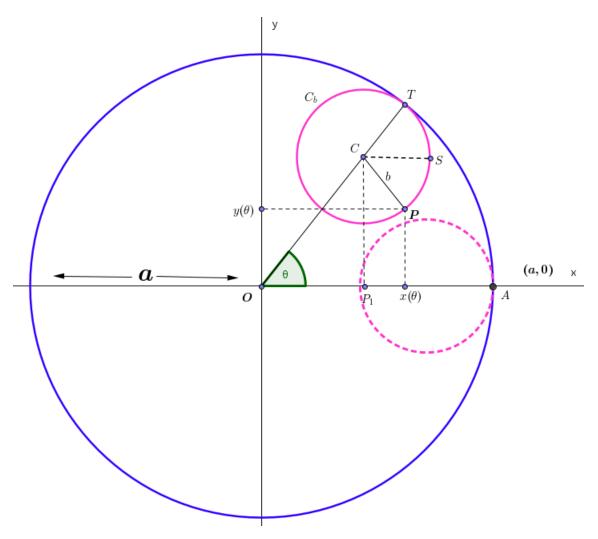



Figure 1: Representação do rolamento

Julgue os itens a seguir atribuindo (V) se a afirmação for VERDADEIRA ou (F) se a afirmação for FALSA.

- (A) (V) (F) Se  $P_1$  é a projeção do ponto C no eixo x, então  $OP_1 = (a-b)\cos(\theta)$  e  $CP_1 = (a-b)\sin(\theta)$ .
- **(B)** (V) (F) Se  $\alpha = T\hat{C}P$ , então  $2\alpha b = a\theta$ .
- (C) (V) (F) Seja S um ponto de  $C_b$  à direita de C após o rolamento tal que o segmento CS é paralelo ao eixo x e  $P_2$  o ponto de interseção entre a reta paralela a CS que passa por P e o segmento  $CP_1$ . Se  $\varphi$  é o ângulo  $S\hat{C}P$ , então  $P_2P = b\sin(\varphi)$  e  $CP_2 = b\cos(\varphi)$ .
- **(D)** (V) (F) O ângulo  $\varphi$  é dado por  $\varphi = \alpha \theta = \frac{(a-b)\theta}{b}$ .
- (E) (V) (F) As coordenadas  $x(\theta)$  e  $y(\theta)$  do ponto P são dadas por  $x(\theta) = (a-b)\cos\theta + b\cos\left(\frac{(a-b)\theta}{b}\right)$  e  $y(\theta) = (a-b)\sin(\theta) b\sin\left(\frac{(a-b)\theta}{b}\right)$ .

## SOLUÇÃO: (A) Verdadeiro.

Considere o triângulo  $\triangle OCP_1$ , onde  $P_1$  é a projeção do ponto C no eixo x então,

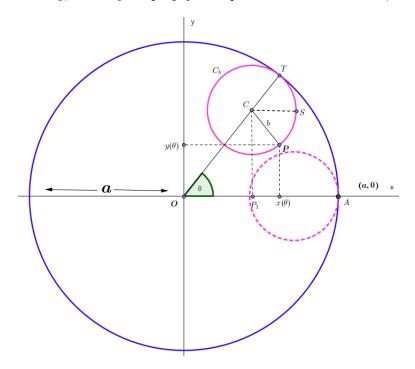



Figure 2: Representação do rolamento

$$cos\theta = \frac{OP_1}{OC} = \frac{OP_1}{(a-b)} \Longrightarrow OP1 = (a-b)cos(\theta)$$

$$sen\theta = \frac{CP_1}{OC} = \frac{CP1}{(a-b)} \Longrightarrow CP1 = (a-b)sen(\theta).$$

#### (B) Falso.

Observe que  $b\alpha = Arco(TP) = Arco(AT) = a\theta$ . Assim,  $b\alpha = a\theta$  (Figura 2). Logo,  $\alpha b = a\theta$ .

#### (C) Falso.

Observando o triângulo  $\triangle PP_2C$  concluímos que  $PP_2 = bcos(\varphi)$  e  $CP_2 = bsen(\varphi)$  pois,

$$cos(\varphi) = \frac{P_2P}{CP} \Longrightarrow P_2P = cos(\varphi)CP = bcos(\varphi)$$

$$sen(\varphi) = \frac{CP_2}{CP} \Longrightarrow CP_2 = sen(\varphi)CP = bsen(\varphi)$$

#### (D) Verdadeiro.

Sendo S um ponto de  $C_b$  após o rolamento tal que o segmento CS é paralelo ao eixo x, olhando para os triângulos  $\triangle P_2PC$  e  $\triangle SCP$ , note que  $\varphi_1$  e  $\varphi_2$  são alternos internos, logo  $\varphi_1=\varphi_2=\varphi$ . Assim,  $\varphi=\alpha-\theta=\frac{(a\theta)}{b}-\theta=\frac{(a-b)\theta}{b}$ .

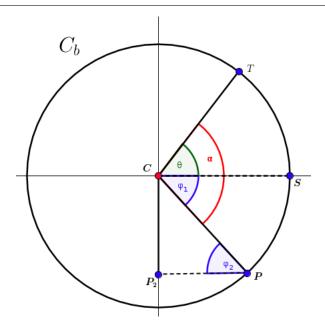



Figure 3: Círculo  $C_b$ 

#### (E) Verdadeiro.

Pela figura observamos que  $x(\theta) = OP_1 + PP_2$  e  $y(\theta) = CP_1 - CP_2$ . Pelo que vimos nos itens anteriores segue que as coordenadas  $x(\theta)$  e  $y(\theta)$  de P são dadas por

$$x(\theta) = (a-b)cos(\theta) + bcos(\varphi) = (a-b)cos\theta + bcos\left(\frac{(a-b)\theta}{b}\right),$$

$$y(\theta) = (a-b)sen\theta - bsen(\varphi) = (a-b)sen(\theta) - bsen\left(\frac{(a-b)\theta}{b}\right).$$

| Q2. | No intervalo entre as aulas de geometria e teoria dos números da "Escola Olímpica de Matemática", Francisco pediu a professora Maité a senha de acesso ao laboratório de computação para jogar "League of Legends" com seus amigos. A professora Maité disse a Francisco que só daria a senha de acesso ao laboratório se ele determinasse a solução da equação: |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $2^{(x-1)} + 3^x = 27^x \cdot 2^{(-2x-1)}.$                                                                                                                                                                                                                                                                                                                      |
|     | Sabendo que Francisco e seus amigos conseguiram jogar "League of Legends" no laboratório, qual foi a solução encontrada por ele?                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                  |

## SOLUÇÃO:

Observe que

$$2^{(x-1)} + 3^x = 27^x \cdot 2^{(-2x-1)}$$
$$= \frac{27^x}{2^{2x+1}},$$

multiplicando por 2 em ambos os membros, obtemos

$$2^x + 2(3^x) = \frac{27^x}{4^x}.$$

Agora dividindo ambos os lados da equação por  $2^x$ , obtemos

$$1 + 2\frac{3^x}{2^x} = \frac{27^x}{8^x}$$

$$\implies 1 + 2\left(\frac{3}{2}\right)^x = \left(\frac{27}{8}\right)^x$$

$$\implies 1 + 2\left(\frac{3}{2}\right)^x = \left(\frac{3}{2}\right)^{3x}.$$

Fazendo agora  $\varphi = \left(\frac{3}{2}\right)^x$ , substituindo na equação acima obtemos

$$1 + 2\varphi = \varphi^3 \Longrightarrow \varphi^3 - 2\varphi - 1 = 0. \tag{1}$$

Fatorando o polinômio à esquerda da igualdade, obtemos

$$\varphi^3 - 2\varphi - 1 = (\varphi^2 - \varphi - 1)(\varphi + 1).$$

Logo as soluções da equação (1) são  $\varphi = \frac{1+\sqrt{5}}{2}, \ \varphi = \frac{1-\sqrt{5}}{2}$  e  $\varphi = -1$ . Como  $\varphi = \left(\frac{3}{2}\right)^x > 0$ , então a única solução possível é  $\varphi = \frac{1+\sqrt{5}}{2}$  que é o número de ouro. Assim, temos

$$\left(\frac{3}{2}\right)^x = \frac{1+\sqrt{5}}{2}.\tag{2}$$

Tomando o logaritmo na base e em ambos os lados da equação (2), obtemos que a senha encontrada é

$$x = \frac{\ln\left(\frac{1+\sqrt{5}}{2}\right)}{\ln\left(\frac{3}{2}\right)}. (3)$$

| Q3. | Considere a seguinte expressão algébric |
|-----|-----------------------------------------|
|     | Determino a quantidade de números in    |

Determine a quantidade de números inteiros  $n \geq 1$  que torna a expressão acima um número inteiro.

**SOLUÇÃO:** No que segue, chamaremos a expressão acima de um certo número inteiro K > 0. Assim,

$$\begin{split} \sqrt{1000 + \sqrt[10]{n}} + \sqrt{1000 - \sqrt[10]{n}} &= K \\ \Longrightarrow 1000 + \sqrt[10]{n} + 1000 - \sqrt[10]{n} + 2\sqrt{1000.000 - \sqrt[5]{n}} &= K^2 \\ \Longrightarrow 4000 > 2000 + 2\sqrt{1000.000 - \sqrt[5]{n}} &= K^2 \\ \Longrightarrow 2\sqrt{1000.000 - \sqrt[5]{n}} &= K^2 - 2000 \ge 0. \end{split}$$

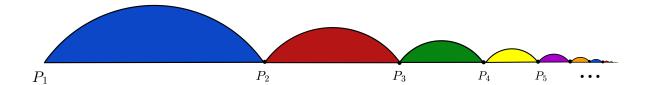
Logo,

$$n = \left[1000.000 - \left(\frac{K^2 - 2000}{2}\right)^2\right]^5$$

e

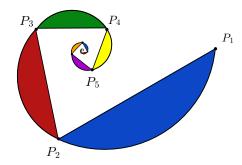
$$2000 \le K^2 \le 4000 \implies 45 \le K \le 63.$$

Como n é um número inteiro então  $K^2$  é um número par, consequentemente, K é um número par. Desde que


$$46 \le K \le 62$$

então

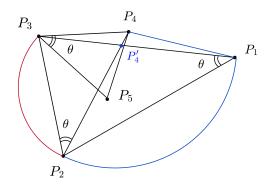
$$K \in \{46, 48, 50, ..., 60, 62\},$$


isto é, para cada K inteiro e par, teremos um único inteiro n, o que mostra que a resposta desejada é 9.

**Q4.** No "Multiverso" do Pirraia e da Piveta, existe uma estrutura plana articulada composta por infinitos segmentos circulares associados às cordas  $P_1P_2$ ,  $P_2P_3$ ,  $P_3P_4$ ,... conforme a figura a seguir.



Deseja-se calcular a área total dessa estrutura, mas apenas a área do segmento circular maior é conhecida. Nossa dupla resolveu esse problema quando descobriu que existe uma configuração para essa estrutura (ver figura abaixo) de um modo que, para cada  $n \ge 1$ :

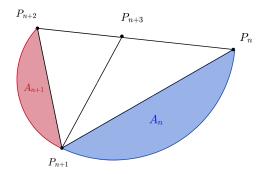

- (i) os triângulos  $P_n P_{n+1} P_{n+2}$  são semelhantes (com esta ordem dos vértices);
- (ii) o ponto  $P_{n+3}$  está a uma mesma distância dos segmentos  $P_nP_{n+1}$  e  $P_{n+1}P_{n+2}$ ;
- (iii) o arco de círculo  $P_n P_{n+1}$  possui centro em  $P_{n+3}$ .



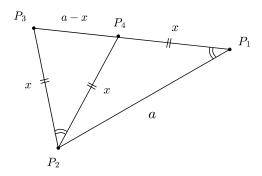
Sendo assim, determine a soma total das áreas dessa estrutura, sabendo que a área do maior segmento circular vale  $5-\sqrt{5}$ .

**SOLUÇÃO:** Primeiramente, note que os pontos  $P_n$ ,  $P_{n+2}$  e  $P_{n+3}$  são colineares, para todo  $n \ge 1$ .

De fato, para simplificar a notação, vamos verificar isto apenas para os pontos  $P_1$ ,  $P_3$  e  $P_4$ , pois o argumento é o mesmo para o caso geral.




Façamos  $P_3\hat{P}_1P_2 = \theta$ . Por (i), temos que  $P_4\hat{P}_2P_3 = \theta$ . A condição (ii) implica que  $P_4$  pertence a bissetriz do ângulo  $P_1\hat{P}_2P_3$ , logo  $P_1\hat{P}_2P_4 = \theta$ .


Por fim, a hipótese (iii) assegura que o triângulo  $P_1P_2P_4$  é isósceles. Daí,  $P_4\hat{P}_1P_2=P_1\hat{P}_2P_4=\theta=P_3\hat{P}_1P_2$ , donde  $P_1$ ,  $P_3$  e  $P_4$  estão alinhados.

Aplicando o mesmo raciocínio para os demais triângulos é possível concluir que, para todo  $n \ge 1$ , os triângulos  $P_n P_{n+1} P_{n+2}$  são isósceles e tais que  $P_n P_{n+3} = P_{n+3} P_{n+1} = P_{n+1} P_{n+2}$ . Em particular,

$$P_1 P_4 = P_4 P_2 = P_2 P_3.$$



Note que os triângulos  $P_nP_{n+1}P_{n+3}$  também são semelhantes para cada  $n \ge 1$ . Logo, os segmentos circulares são semelhantes e, portanto, a sequência das áreas  $A_1,\ A_2,\ \dots$  forma uma progressão geométrica P.G  $(A_1,\ A_2,\ A_3,\dots)$  cuja razão  $q=\frac{A_{n+1}}{A_n}$  entre duas áreas consecutivas é dada pelo quadrado da razão de semelhança. A razão de semelhança pode ser calculada por  $\frac{P_2P_3}{P_1P_2}$ .



Dada a semelhança  $P_1P_2P_3 \sim P_2P_3P_4$  e considerando  $P_1P_2 = a$  e  $P_2P_3 = x$ , segue-se que

$$0 < \frac{a}{x} = \frac{x}{a - x} \implies x^2 + ax - a^2 = 0 \implies x = \frac{\sqrt{5} - 1}{2}a$$

Daí, 
$$\frac{P_2 P_3}{P_1 P_2} = \frac{a}{x} = \frac{\sqrt{5} - 1}{2}$$
.

Logo, a razão 
$$q$$
 entre as áreas é  $q=\left(\frac{\sqrt{5}-1}{2}\right)^2=\frac{6-2\sqrt{5}}{4}=\frac{3-\sqrt{5}}{2}$ 

Desta forma, a soma das infinitas áreas que compõem a estrutura é dada por

$$S = \frac{A_1}{1 - q} = \frac{5 - \sqrt{5}}{1 - \frac{3 - \sqrt{5}}{2}} = \frac{2(5 - \sqrt{5})}{\sqrt{5} - 1} = \frac{2(5 - \sqrt{5})}{\sqrt{5} - 1} \cdot \frac{\sqrt{5} + 1}{\sqrt{5} + 1} = \frac{2 \cdot 4\sqrt{5}}{4} = 2\sqrt{5}$$

| Q5. | O Pi-raia possui em seu quarto uma caixa contendo 3 medalhas de ouro, 3 de prata e 3 de bronze, sendo que medalhas de um mesmo material são indistinguíveis. De quantos modos o Pi-raia pode dispô-las em fila sobre uma prateleira se ele não deseja que medalhas de um mesmo material fiquem juntas? |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                        |

**SOLUÇÃO:** Representando por "O", "P" e "B" os três materiais (ouro, prata e bronze), podemos identificar uma disposição das medalhas sobre a prateleira com um anagrama da palavra OOOPPPBBB. Denotemos por

$$\Omega = \{anagramas \ de \ OOOPPPBBB\}$$

e sejam

 $X = \{anagramas \ de \ OOOPPPBBB \ nos \ quais \ ocorre \ o \ bloco \ OO\}$   $Y = \{anagramas \ de \ OOOPPPBBB \ nos \ quais \ ocorre \ o \ bloco \ PP\}$  $Z = \{anagramas \ de \ OOOPPPBBB \ nos \ quais \ ocorre \ o \ bloco \ BB\}$ 

O problema consiste, portanto, em contar os elementos de

$$|\Omega| - |X \cup Y \cup Z|$$
.

Temos

$$|\Omega| = \frac{9!}{3!3!3!} = 1.680.$$

Por outro lado, o princípio da inclusão e exclusão afirma que

$$|X \cup Y \cup Z| = |X| + |Y| + |Z| - |X \cap Y| - |X \cap Z| - |Y \cap Z| + |X \cap Y \cap Z|.$$

Para contar os anagramas de X, basta supor que duas letras OO formam um único bloco OO. Assim, teremos 7 letras e o bloco OO para permutar, o que pode ser feito de

$$\frac{8!}{3!3!} = 1.120 \mod s$$

Entretanto, ao contar estes anagramas, contamos os anagramas que possuem o bloco OOO duas vezes. Com efeito, estes foram contados uma vez quando contamos os anagramas que possuíam uma letra O seguida do bloco OO e outra vez quando contamos os anagramas que possuíam o bloco OO seguido do bloco O. O número de anagramas que contêm o bloco OOO é

$$\frac{7!}{3!3!} = 140.$$

Logo, |X| = 1.120 - 140 = 980. Por um raciocínio análogo, conclui-se que |Y| = |Z| = 980.

Os anagramas de  $X \cap Y$  contém um bloco OO, um bloco PP e 5 letras, logo temos

$$\frac{7!}{3!} = 840$$

anagramas ao todo. Aqui, porém, foram contados duas vezes os anagramas que contém um bloco OOO e um bloco PP e duas vezes os anagramas que contém um bloco OOO e um bloco PPP. Os anagramas que contém um bloco OOO e um bloco PP são em número

$$\frac{6!}{3!} = 120,$$

e o mesmo ocorre para os anagramas que contém um bloco OO e um bloco PPP. Descontando do valor obtido originalmente, ficamos com  $840-2\cdot 120=600$  anagramas. Porém, neste processo, os anagramas que contém os blocos OOO e PPP, que são em número

$$\frac{5!}{3!} = 20,$$

foram contados quatro vezes e, em seguida, descontados quatro vezes. Logo, como não foram contados nenhuma vez, devemos contá-los uma única vez. Assim, o total de elementos de  $X \cap Y$  é 620. Por simetria,  $|X \cap Z| = |Y \cap Z| = 620$ .

Por fim, para contar os elementos de  $X \cap Y \cap Z$ , contamos os anagramas que contém os blocos OO, PP e BB e as letras O, P e B, o que nos dá 6! = 720 anagramas. Nestes, contamos duas vezes os anagramas que contém OO, PP e BB, duas vezes os anagramas que contém OO, PP e BB e duas vezes os anagramas que contém OO, PP e BBB. Como cada um destes ocorre em número 5! = 120, temos que o novo sub-total é  $720 - 3 \cdot 120 = 360$ . Fazendo isso, os anagramas que contém OOO, PPP e BB foram descontados quatro vezes,quando haviam sido contados 4 vezes, originalmente. O mesmo vale para os anagramas que contém OOO, PP e BBB e OO, PPP e BBB. Como cada caso destes contém 4! = 24 anagramas, incluímos estes na nossa contagem, obtendo assim o subtotal  $= 360 + 3 \cdot 24 = 432$ .

Finalmente, os anagramas que contém os blocos OOO, PPP e BBB, que são em número 3! = 6 foram contados 8 vezes inicialmente, descontados 12 vezes e contados novamente 6 vezes, de modo que estes anagramas foram contados 2 vezes. Assim, o número de elementos de  $X \cap Y \cap Z$  é, de fato, 432 - 6 = 426.

Portanto, a resposta final é

$$|X \cup Y \cup Z| = |X| + |Y| + |Z| - |X \cap Y| - |X \cap Z| - |Y \cap Z| + |X \cap Y \cap Z|$$
$$= 1.680 - (3 \cdot 980 - 3 \cdot 620 + 426)$$
$$= 174.$$